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Any crystal structure may be described in terms of a sublattice of points, each of which represents a 
certain fraction of the electron density. Multiplying this sublattice by a density function f(x) and 
applying a shift function s(x), which brings the atoms into the right positions, the correct crystal struc- 
ture can be given in many different ways. It is shown that the shift function s(x) yields phase relations 
between the structure factors F(h), which may be evaluated directly, if the coefficients of the Fourier 
representation of s(x) converge rapidly. This behaviour is demonstrated for the case of a one-dimen- 
sional acentric model structure consisting of 50 atoms. Complete information on the structure may 
be obtained by routine methods with the aid of 5 given phases of the structure factor. This procedure 
may also be applied to three-dimensional structures, if the corresponding computer programs are 
available. 

1. Introduction 

The existence of satellites in any diffraction pattern 
indicates a simple lattice superstructure. This super- 
structure may be described in terms of the coefficients 
of the corresponding Fourier-representation of density 
or shift functions. 

In the case of X-ray diffraction examples with one 
or two Fourier coefficients have been discussed by 
Dehlinger (1938), Preston (1938), KochendSrfer (1939), 
Daniel & Lipson (1943, 1944), Hargreaves (1951) and 
others. A more general treatment of this problem has 
been published by Korekawa & Jagodzinski (1967) for 
the case of plagioclases of various compositions, where 
complex behaviour of satellites is observed. A full ac- 
count of the mathematical background to their method 
has been given by Korekawa (1967). It can be shown 
that phase relations between density and shift func- 
tions may be derived directly from the diffraction 
pattern. 

Any crystal structure may be described in this way, 
if the restriction of convergent Fourier coefficients of 
density and shift functions is removed. In this case the 
diffraction pattern cannot be described in terms of 
'main' reflexions and 'satellites', as each observed 
Bragg-reflexion may be attributed to either group. It 
is possible to judge from the diffraction pattern whether 
a rapidly convergent set of Fourier coefficients of den- 
sity or displacement can be found, but this is only 
true in very special cases which will not be considered 
here. We shall introduce complete chemical informa- 
tion in order to obtain a unique description of the 
structure; this is necessary because there are a very 
large number of possible pseudo-homometric struc- 
tures which can only be excluded by chemical con- 
siderations. 

It will be shown that this kind of treatment of the 
diffraction pattern yields phase relations between struc- 
ture factors, and more efficient refinement procedures. 

2. Qualitative description of the new method 

Let us discuss our method in terms of a one-dimen- 
sional model. We start with a sublattice of M equidis- 
tant points, each of which represents one electron or 
a fraction (or multiple) of it. The number of electrons 
nM to be represented by one point is given by 

nM=N/M (1) 

where N is the total number of electrons in the unit 
cell [Fig. l(b)]. There appear to be two possible simple 
representations of the structure: 

(1) By multiplying the various points of the sublattice 
with a normalized density functionfM(x) according to 
Fig. l(a). 

(2) By applying the shift function sM(x), which dis- 
places the lattice points corresponding to the value of 
sM(x), in the positive or negative direction, according 
to Fig. l(c). 

The result of this operation is shown in Fig. l(d). 
It may easily be seen that both representations should 
result in the same structure for M --~ co, although their 
structure factor is described in completely different 
ways, as will be shown in the mathematical § 3 of this 
paper. 

The first description of the structure corresponds 
exactly to the usual Fourier-representation of the elec- 
tron density with the integrated electron density nor- 
malized to unity. Therefore the Fourier coefficients 
are - neglecting the constant - exactly the same. The 
second representation is completely different, neither 
the amount nor the phase of the Fourier coefficients 
of sM(x) being known, but whatever the function sM(x) 
may be, the electron density remains everywhere pos- 
itive. Some correlation exists between the structure 
factors F(h) and the Fourier coefficients of the Fourier- 
representation of sM(x), but this will not be discussed 
here. 

The usual procedure of solving a complicated struc- 
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ture is stepwise by restr ic t ing the ' resolu t ion  power '  and  
we will describe a s imilar  m e t h o d  in terms of  our  model  
for the case o f  po in t  a toms  (the use of  ' un i t a ry '  struc- 
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Fig. 1. Possible different representations of the same structure. (a) A sublattice of M equidistant points is multiplied by the 

normalized density function. (b-d) The points (b), which represent a certain number of electrons or fraction of it, are dis- 
placed (c) by a shift function s(x); the arrows indicate the displacement and the positions of the maxima respectively (d). 
(e-g) Approximate description by a sublattice of 16 points (e); (f) s(x) brings the points to the atom positions [cf. (a)]. 
(h-i) The weighted sublattice (h) yields the description of the structure given in (g) by a more rapidly convergent set of Fourier 
coefficients of s(x), shown in (i). (k-l) A sublattice of five points (k) gives another possibile representation of the structure 
with a slightly different density function and a still more rapidly convergent set of Fourier coefficients (l). (m) Representation 
with the aid of a density function, for the case of rational atomic coordinates only (12 of the 16 points have to be cancelled 
by the density function in this particular case). 
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with four atoms. This may be done by taking into ac- 
count the chemistry of the compound. The correspond- 
ing shift function s~6(x), which has to be introduced 
to bring atoms of the required height into the correct 
positions [Fig. l(g)], is shown in Fig. l(f). It should 
be pointed out that the function sM(x), given in Fig. 
l(c), is very similar to the one shown in Fig. l(f) .  

The convergence of the Fourier coefficients S~  at- 
tributed to sM(x) is proportional to 1/n. This result may 
be obtained by assuming abrupt jumps of sM(x) be- 
tween the straight regions representing the atoms and 
their 'heights'. However, as sM(x) has only to be de- 
fined at the sublattice positions, a different function 
with more rapidly convergent Fourier coefficients, may 
be chosen. The use of incorrect shift functions will 
generally lead to a 'chemically different' structure, as 
the number of atoms and their heights are not yet 
fixed; they depend on the choice of the shift function. 

A better solution should be found if complete chem- 
ical information is introduced for the sublattice itself. 
This may be done by choosing a sublattice with four 
atoms, the points of which are multiplied by a density 
function, which has only to be defined at the sublattice 
positions; thus the functionf4(x) with the most rapidly 
convergent set of Fourier coefficients may be chosen. 
The number of ways of distributing the four atoms, 
two of which are alike in our example, on the four 
positions, leads formally to 4!/2!= 12 models, which 
are mostly equivalent by translation or centrosym- 
metry. Thus only two essentially different structures 
remain, one of which has only unlike atoms as neigh- 
bours, and the other has not. If the 'chemistry' of our 
compound is known, only one of the two models in 
question is probable, and the 'model' structure is al- 
ready found. Since the maximum shift of any atom is 
restricted by the sum of the minimum separation d of 
the atoms + a - d  (a--lattice constant), a very rapid 
convergent function s4(x) may be expected for the solu- 
tion of the correct structure, as demonstrated in Fig. 
I(i). 

However, the convergence of the Fourier coefficients, 
determining sM(x), may still be improved, especially if 
the atoms are not uniformly distributed. Introducing 
a sublattice with five points, a slightly different density 
function fh(x) has to be defined, which should be zero 
at the site of the most appropriate point of the sublat- 
tice as shown in Fig. l(k). In this case a shift function 
with better convergence of its Fourier coefficients re- 
sults [Fig. l(l)]; it should be pointed out that the 
number five for optimal convergence is accidental. On 
the other hand the X-ray pattern itself gives informa- 
tion about which values of M are best suited for rapid 
convergence. This procedure may be continued by the 
use of an increasing number of points of the sublattice, 
thus introducing more holes into the structure, until 
the shift function is zero and the normal density rep- 
resentation is reached, which gives correct amplitudes 
and phases as determined by the convergent procedure 
of the new method. This is shown on Fig. l(m), but it 

should be pointed out that in general, with non-rational 
atomic coordinates the shift function 'zero' will be ob- 
tained only for M - +  co, because the last small atom 
displacements may be better corrected with normal 
atomic coordinate refinement procedures. 

At the beginning of a structure determination, rep- 
resentation of the structure by shifts in the sublattice 
points is most convenient, because correlations be- 
tween phases of structure factors F(h) are given with 
most reliable information for small values of h. Chem- 
ical information may be introduced gradually in order 
to determine density functions, which describe the cor- 
rect sequence of atoms. Thus an early introduction of 
the maximum chemical information may easily be 
achieved and a more rapid convergence may be ex- 
pected; this method seems to be especially useful where 
normal refinement procedures do not converge. 

3. Mathematical formulae 

The mathematical relationship between the structure 
factors F(h) and the Fourier coefficient of the density 
functions fM(x) and shift functions sM(x) is given by 

F(h) = ~ FM(h +)2, npn) 
{p.} 

MI2 
x H Jpn(2rchS~) exp 2rc/pnq)n M 

n =  I 

where 

Jp a(2ghS~)= 

S. ~, ~.~= 

(2) 

N 

F(h) = ~ fk exp 2zcihxk 
k = l  

M = I  

FM(h) = 2; 0(~t) exp 2rcihk/M 
k = 0  

0(~) =the density of the kth point of the sub- 
lattice with M points, 
the Bessel function ofpnth order, 
(pn = integer), 
the amplitudes and phases of the Fourier 
coefficients of the shift function 
M/2 

s(x)= 2; S~ sin 2n(nx+~o~). 
n = l  

The summation over {pn} involves sets of all possible 
combinations of products Jpl . JP2 . . . . .  JPM/z with 

- co<pn<C~ for n = l , 2  . . . .  , M / 2 .  

In the case of a vanishing function sM(x)= 0 all Fourier 
coefficients S ,  m are zero and according to the relations 

Jn(0) =0  and 
s0(0)=l, 
F(h) = FM(h) results. 

This relation may occur accidentally in the case of 
rational atomic coordinates. If M approaches infinity, 
the shift function will become zero, consequently we 
have 

S ~ = 0  for all values of n ,  



H. J A G O D Z I N S K I  AND D. PHILIPP  233 

and therefore 

FM(h)=F(h). 

As long as the values of 2nhS M are sufficiently small, 
only the zero and first order Bessel function are im- 
portant. Starting with a given density function f g ( x )  
incorporating the necessary number of atoms, the ar- 
rangement of which may still be wrong, the structure 
factors can be calculated from a first order approxima- 
tion with respect to the shift function for h :/:0: 

M[2 MI2 jl(2nhS M) 
F(h) = H go(2nhSM~). Jo(2nhSMn) n = l  n " = I  

{FM(h+n) exp 2 n i q ~ - F M ( h - n )  exp (--2ni~pM)} (3) 

In this equation the unknown phases of the structure 
factors F(h) are correlated with the known Fourier co- 
efficients of the density function FM(h) by the param- 
eters of the shift function which brings the atoms into 
the right positions. 

The efficiency of this procedure is strongly dependent 
on the choice of FM(h). But there is another way of 
determining F(h). For small values of h a sublattice 
containing a smaller number of points than atoms may 
be chosen. In this case each point of the sublattice 
represents a group of atoms, the interference of which 
may be taken into account by introducing a homo- 
geneous density. If the number of points of the sub- 
lattice is M, M/2 Fourier coefficients are needed for 
the shift function; thus a modified equation (3) may 
be used in a similar way to that indicated above and 
the phases of F(h) (h < ho) may be determined. 

After each step the agreement between the calcu- 
lated structure factors and the observed structure am- 
plitudes, within the region of convergence (h<ho), 
must improve until the structure is finally solved with 
limited resolution. 

The procedure described above is very tedious with- 
out the corresponding computer program. Therefore 
we will not illustrate the procedure of phase determina- 
tion itself, but will show that the information from a 
very small F(h) set is sufficient for refinement based 
on our method. In the following example we have 
homogeneous density at the sublattice points. The 
Fourier coefficients of the density function are known 

in this case: 

M f o r h = 0 m o d M  
FM(h)= 0 elsewhere. (4) 

This equation is approximately valid for lattices 
where the density distribution is almost uniform; this 
may be verified by checking the observed F(h) for small 
values of h (F(h) must be small compared with F(0), if 
almost equal atoms are distributed uniformly in the 
cell). 

For uniform density equation (3) is simplified to 

M/2 
F(h)= H Jo(2nhSM). M 

n = l  

J_l(2nhS~n) exp ( -  2ni~p n M) (5) 
× Jo(2nhS~) " 

The initial information on the shift function in the 
following example is obtained from this equation. 

4. One dimensional example 

In order to give some idea of the usefulness of the new 
method, and of the number of Fourier coefficients 
necessary to fix the shift function, a one-dimensional 
example of an acentric structure, containing 50 atoms 
of equal scattering length, has been chosen. Table 1 
gives the atomic coordinates of the structure, which 
were fixed subject to the condition that distance ex- 
trema were not exceeded, which seems to be plausible 
for normal crystal structures; it may be easily shown 
that this condition improves the convergence of pos- 
sible S~' according to equation (2) or (3). For the sake 
of simplicity four sets of equidistant atoms were chosen. 
A possible objection that this example is too specialized 
can be dismissed on the grounds that small fluctuations 
in atomic distances within one set of atoms would not 
influence the Fourier coefficients used for refinement. 

In order to show the improved convergence of our 
method, compared with usual procedures, we apply 
our method to this structure. We assume the first six 
phases of F(h), one of which may be arbitrarily chosen, 
to be given. Thus only five pieces of information were 
used to obtain complete information on 49 atomic co- 
ordinates. The results of the calculation of the Fourier 

Table 1. Atomic coordinates of a one-dimensional acentric model structure (50 points of equal scattering length) 

i X(i) i X(i) i X(i) i X(i) i X(i) 
0 0.000 10 0.180 20 0.350 30 0-560 40 0.800 
l 0.018 11 0.193 21 0.371 31 0.584 41 0.824 
2 0.036 12 0.214 22 0.392 32 0.608 42 0.848 
3 0.054 13 0.231 23 0.413 33 0.632 43 0.867 
4 0.072 14 0-248 24 0.436 34 0.656 44 0-886 
5 0.090 15 0.265 25 0.455 35 0.680 45 0.905 
6 0.108 16 0.282 26 0.476 36 0.704 46 0.924 
7 0.126 17 0.299 27 0.497 37 0.728 47 0-943 
8 0.144 18 0.316 28 0.518 38 0.752 48 0.962 
9 0-162 19 0.333 29 0.539 39 0.776 49 0.981 

A C 2 6 A  - 5 
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Table 2. Result o f  the zero-approximation for S~  and ~o M, as calculated from the first six given phases F(h) accor- 
ding to equation (5), compared with the exact values 

Structure factor Fourier coefficients 
Approximate Exact values 

h, n IF(h)l z(h) • 2rr Sn (on. 2re Sn (on. 2re 
0 100"00 0"00 0"0000 0"00 0"0000 0"00 
1 8"30 0"17 0"0266 0"33 0"0263 0"31 
2 0"56 -0"16 0"0009 0"66 0"0031 0"64 
3 1 "92 - 0"24 0"0022 0"74 0"0020 0"71 
4 0"62 0"03 0"0005 0"47 0"0008 0" 11 
5 1"86 0"49 0"0012 0"01 0"0007 -0"14 
6 0"64 0"07 0"0004 0"43 0"0001 0"26 

coefficients of the shift function, according equation 
(5), for the first six S~ and cp~ are given in Table 2, 
and compared with their exact values. The agreement 
between the calculated function s(x) (full line) and the 
correct function (dotted line) is given in Fig. 2. That 
these first few Fourier coefficients are sufficient to solve 
the complete structure determination can be shown in 
the following way: 

(1) A least-squares refinement of the phases and 
amplitudes of the Fourier coefficients S~, ~0~ was car- 
ried out, using the 20 most intense F(h). The R index 
decreased from 0.49 to 0.12 after four cycles. 

(2) The subsequent refinement of coordinates started 
with R = 0,20 which decreased to 0.05 after two cycles. 
The atomic positions were found in this way with suf- 
ficient accuracy (better than 0.05%). 

It should be pointed out that the usual atomic co- 
ordinates refinement procedure did not converge be- 
fore the refinement of the S~, ~0~ had been completed. 
This indicates that the present method is superior to 
normal refinement methods. This is due to the fact 
that all displacements are introduced in a strictly cor- 
related way by the shift function; the convergence of 
the Fourier series of this function is guaranted by 
chemical considerations. 

5. Conclusions 

The extension of this method to three-dimensions 
is in preparation. It is self-evident that all equations 
and relations are much more complex than for the one- 
dimensional case, but in principle it should be possible 
to develop this method in three dimensions. The dif- 

six) 

Fig. 2. Exact shift function (dotted line) of the structure, given 
in Table 1, compared with the shift function (full line) cal- 
culated with the approximation given in equation (4). 

ficulty that the displacement of the points of the sub- 
lattice cannot be given uniquely can be overcome by 
introducing limiting conditions, imposed by the con- 
vergence properties of the shift functions. 
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